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ABSTRACT

A novel alternating transmission line matrix
scheme (ATLM) is presented where the TLM cells
are subdivided into two subsets of mutually neigh-
bouring cells. Within each time step the state of
one subset of cells is computed from the states of
the neighbouring cells at the previous time step.
Compared with existing TLM schemes the numer-
ical effort as well as the storage requirements are
reduced by 50% without loss of accuracy. Fur-
thermore, spurious solutions occuring in existing
TLM schemes can be avoided by ATLM.

INTRODUCTION

The TLM method has proven to be a very
powerful method of electromagnetic field compu-
tation [1]. In TLM, the continuous space is dis-
cretized by introducing a TLM mesh with the
TLM nodes as the elementary elements. The elec-
tromagnetic field is represented by wave pulses
scattered in the nodes and propagating in trans-
mission lines between neighbouring nodes. This
picture of TLM stresses the analogy to the net-
work concept. Originally TLM is based on the
analogy between the electromagnetic field and
a mesh of transmission lines [2]. The three-
dimensional TLM method with symmetrical con-
densed node (SCN) introduced by Johns [3] has
been derived directly from Maxwell’s equations
using the Method of Moments [4].

Comparing TLM schemes with finite difference
(FD) schemes one characteristic property of all
TLM schemes is that a pair of canonically conju-
gated F and H field components is sampled to-
gether in one space-time point. In contrast to this
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| the classical FD schemes sample the E and H field

components at different points. In Yee’s so-called
leapfrog FDTD scheme the sampling points for the
FE field components and the H field components
are mutually shifted by half a discretization inter-
val of the time coordinate as well as for the space
coordinate [5].

However, compared with FD schemes all
known TLM schemes suffer from a serious draw-
back which has not been considered in literature
up to now. Considering a homogeneous domain
modelled by TLM nodes without stubs the state
of a TLM cell for a given discrete time coordinate
only depends on the states of the neighbouring
cells at the previous time coordinates. In homo-
geneous regions modelled by TLM without stubs
there is no mutual dependence of the states of
neighbouring cells. This can be seen clearly if we
define a so-called parity p assigned to TLM wave
pulses discrete space coordinates I, m, n and the
discrete time coordinate k by

p=sign(k+I+m+n). (1)

If the sum k 4!+ m+n is even then p = +1 and if
k+14+m+nis odd then p = —1. Now it is easy to
check that in any TLM mesh without stubs and
boundaries the TLM pulses depend only on pre-
vious pulses with the same parity. The lack of
interference between pulses with different parity
has serious consequences which can easily be veri-
fied. Choosing for example different initial condi-
tions for cells with even and odd parity will result
in a parallel computation of these two problems
specified for the cells with odd and even parity.
You will see that the even and odd cells and their
corresponding evolving field distributions change
their places with each time step but both field
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distributions do not interfere. If the initial con-
ditions are chosen with smooth distribution over
the whole mesh it may happen that the field evo-
lution is spatially smooth. However this will be
in the sense of a prestabilized harmony between
even and odd states and not by a causal relation.
The result will not be more accurate than from
computing only the evolution of the states with
even parity and getting the states with odd parity
at the end of the computation by interpolation.
Therefore the numerical effort as well as the stor-
age requirements may be reduced by 50% without
any loss in accuracy by restricting the computa-
tion to states with only one parity. Considering
for example only states with even parity means
that for even k only the states of cells with even
{4+ m+n are defined and for odd k only the states
of cells with odd ! + m + n are defined.

If we restrict the computation to pulses with
one parity we have to avoid boundary condi-
tions and stubs which link odd and even pulses.
Boundaries spaced by the half discretization in-
terval Al/2 from the nodes as well as stubs with
length Al/2 couple pulses with even and odd par-
ity. This coupling by perturbation cannot be con-
sidered as a remedy for the above stated prob-
lems. Therefore the solution of our problem is to
avoid the coupling of pulses with different pari-
ties also at boundaries and in the case of mod-
elling regions with different material parameters.
This is achieved by avoiding transmission line ele-
ments of length Al/2. If in the whole TLM scheme
only transmission line elements of length Al are
used, the parity of all transmitted and reflected
pulses is conserved. In principle all existing TLM
schemes may be adapted in this way. However,
stubs of length Al as well as distances Al between
the nodes and the walls would degrade the accu-
racy of the TLM computation. Therefore TLM
schemes which allow to model variable material
parameters as for example the symmetrical super-
condensed node (SSCN) proposed by Trenkic et
al. [6, 7] should be preferred.

THE SSCN TLM SCHEME

The SSCN allows anisotropic media to be
modelled without stubs [6, 7). We restrict our
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considerations to the case of a regular orthogonal
mesh with equal spatial discretization intervals Al
in all three directions. Fig. la shows the SSCN.
The structure of the SSCN is identical with the
structure of the SCN. However the S-matrix of
the SSCN is different from the S-matrix of the
SCN and is given by

R, So 87
s=(dms) o
So 8§ Ro

with the submatrices

-p 0 0 0
10 —p 00
Ro = 0 0 p 0}’
0 0 0 p
0 0 v -1
0 0 -7 T
So = T r 0 0 (3)
T r 0 0

and the parameters p and 7 given by
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where ¢, is the relative permittivity. The relative
permeability is kept u, = 1. Note, that six of the
diagonal elements of the S-matrix are identical
and have positive sign. The other six diagonal el-
ements are of opposite sign. We have two groups
of lines with different characteristic impedances
Z4+ and Z_. The positive reflection coefficients p
belong to the ports with the lower characteristic
impedances Z_ whereas the negative reflection co-
efficients belong to the ports with the higher char-
acteristic impedances Z.

In [4] it is shown that for the conventional
SCN TLM scheme introducing the wave ampli-
tudes with respect to the TLM cell boundaries
yields a bijective one-to-one mapping between the
24 transverse electric and magnetic field compo-
nents and the 2x 12 TLM wave amplitudes. In the
network model of TLM, in each sampling point,
one port is assigned to each polarization. By this
way, we assign an elementary multiport to each
TLM cell. In the literature, this multiport is called

(4)
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Fig. 1: (a) the symmetrical supercondensed node
and (b) electric wall half-node.

the TLM node. The term TLM cell denotes the
geometrical object we have defined in the conti-
nous space, whereas the term TLM node denotes
the abstract network model representing the re-
lations between the wave amplitudes in the sam-
pling points of a TLM cell. In the ATLM scheme
we have reduced the number of wave pulses by
a factor of two compared with the conventional
TLM scheme. This allows to sample the electric
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and magnetic field components in the mesh nodes
and also to achieve a bijective one-to-one map-
ping between the electric and magnetic field com-
ponents and the wave amplitudes.

MODELLING OF TEE WALLS

Moving the boundaries into the TLM node
planes requires the introduction of boundary and
wall nodes for plane surfaces, corners and edges.
Therefore ATLM requires a library for the dif-
ferent wall and boundary types. In the fol-
lowing we restrict ourselves tc the consideration
of the nodes describing the plane electric wall
and the plane magnetic wall. For these wall
types each of the wall nodes exhibits six ports.
Fig. 1b shows the electric wall node. We ob-
tain the electric wall node from the SSCN twelve-
port by short-circuiting the ports 5, 6, 11, and
12 and letting the rear ports 1 and 3 untermi-
nated. The electric wall scattering matrix S,
for the remaining ports 2, 4, 7, 8, 9, and 10
is renormalized for the characteristic impedances
(Z4,2-,Z4+]2,Z_/2,Z,/2,Z_]2). With

VITR

K= 5
7 (5)
we obtain
- 0 -k & 0 0
0 »p 0 0 -k «k
|-« 0 p 0 T T
Sew = k 0 0 p T T (©6)
0 -k 7 1 =-p O
0 kK 1T K 0 -—p

The ports 1 and 2 describe field components par-
allel to the wall, whereas the ports 3, 4, 5, and
6 describe electric field components normal to the
wall and magnetic field components parallel to the
wall. Considering the scattering matrix S., we
see that a wave pulse with horizontal polarization
incident in port 1 is not only backscattered but
also scattered into ports 3 and 4 and from there
backscattered via the neigbouring nodes.

We obtain the magnetic wall node from the
SSCN twelve-port letting the ports 7, 8, 9, and
10 unterminated and by short-circuiting the rear



ports 1 and 3. The magnetic wall scattering
matrix Sy, for the remaining ports 2, 4, 5, 6,
11, and 12 is renormalized for the characteristic
impedances (Z4,2-,224,27_,27,,27_).

-2 0 0 0 &k &K

0 p kK &K 0 0

_ 0 « —p O T -7
Smw = 0 « 0 —-p -7 T (@)

£k 0 7 -1 p 0

kK 0 —7 T 0 »p

NUMERICAL EXAMPLE

As an example we modelled a via-hole on GaAs
substrate as depicted in fig. 2. The substrate
height is h; = 100pm. The metallization thickness
of the line is hy = 3um and the diameter of the
via is d = 60um. For calculating the S-parameters
of the via-hole, we considered only one half of the

structure with a symmetry plane. The mesh was .

discretized by 65 x 128 x 94 TLM nodes in cubic
cells with Al = 3um.

observation
point

substrate
£=12.9, =1

Fig. 2: Via-hole.

Fig. 3 shows the scattering parameter [Si|
as calculated with traditional TLM and ATLM.
The reduction of the computational effort and the
memory requirements, both by a factor of 2, does
not affect the accuracy of the computation.
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